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On a Computational Method for the Second Fundamental Tensor

and its Application to Bifurcation Problems*

by
Patrick J. Rabier

and

Werner C. Rheinboldt
Institute of Computational Mathematics and Applications

Dept.of Mathematics and Statistics, University of Pittsburgh,

Pittsburgh, PA 15260UDedicated to Professor Richard S. Varga on the occasion of his
60th birthday. .

Abstract: An algorithm is presented for the comput~tion of the second funda-
mental tensor V of a Riemannian submanifold M of V. From V the Riemann curva-
ture tensor of M is easily obtained. Moreover, V has a close relation to the
second derivative of certain functionals on M which, in turn, provides a
powerful new tool for the computational determination of multiple bifurcation
directions. Frequently, in applications, the manifold M is defined implicitly
as the zero set of a submersion F on 0 . In this case, the principal cost of
algorithm for computing V(p) at a given point p ' M involves only the decompo-

sition of the Jacobian DF(p) of F at p and the projection of d(d+l) neighbor-
ing points onto.M by means of a local iterative process using DF(p). Several
numerical examples are given which show the efficiency and dependability of
the method. t

1. Introduction

U In recent years various computational methods for the analysis of dif-

3 ferentiable manifolds have been developed, see e.g. [8],[9],[10] where also

other references can be found. These methods have numerous applications in the

5 study of multi-parameter equilibrium problems and their bifurcation behavior.

But, up to now, there appear to exist no general purpose numerical methods for

the computation of the curvature tensor of a Riemannian manifold M or any of

5 its related quantities. Yet, the curvature tensor incorporates all the infor-

Ir
* This work was in part supported by the National Science Foundation
(DCR-8309926) and the Office of Naval Research (N-00014-80-C-9455). The second
author began some of the work while visiting the University of
Heidelberg/Germany as an Alexander von Humboldt Senior U. S. Scientist.
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mation about the metric properties of M and hence is of considerable impor-

tance in the solution of problems which intrinsically involve the metric of M.

In this paper we present a first algorithm for the computation of the

second fundamental tensor of a sub-manifold M of Rn on which a Riemannian

metric is induced by the Euclidean inner product on Rn . Our reason for concen-

trating on the second fundamental tensor is two-fold. First of all, this ten-

sor retains all the information about the metric properties of the manifold,

and the Riemann curvature tensor can be computed from it by means of a simple

formula (see e.g.[12] and section 2 below). On the other hand, the second fun-

damental tensor has a close relationship with the second derivative of certain

real valued functionals on the manifold and this, in turn, provides a powerful

new tool for a computational analysis of non-degenerate bifurcation phenomena

when possible multiple branching occurs.

In Section 2 below we summarize our notation and collect, without proof,

some key results from Riemannian geometry. Full proofs can be found in most

texts in this area, as, for instance, [1] or [12]. Section 3 introduces the

concepts leading to the calculation of the second fundamental tensor, and then

in Section 4 these concepts are used to formulate our principal algorithm. In

Section 5 we discuss the indicated application of this algorithm to the compu-

tation of bifurcation directions. The algorithm has been implemented as a gen-

eral purpose FORTRAN package which provides also an interface to the methods 1
discussed in the mentioned earlier references (8]-[10] as well as to the con- I
tinuation code PITCON (see [11]). Some experimental results with this package

involving various bifurcation problems are presented in Section 6. 3
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2. Basic concepts from Riemannian geometry.

We denote by V the standard connection (covariant differentiation) in Rn.

In other words, for any smooth vector fields X and Y on R, VxY is the vector

field obtained by differentiating Y in the direction X.

3I Throughout this paper, M C Rn will be a smooth sub-manifold with dimen-

sion d> 2. Then, for two vector fields X and Y that are tangent to M, VXY is

defined for any extension of X and Y to vector fields on n. As a vector field

on M (with values in Rn), VXY turns out to be independent of these extensions.

It will be assumed that Rn is equipped with the canonical inner product

<.,-> which induces the Riemannian metric on M. Accordingly, orthogonality

will always be understood in the sense of this inner product. Then, for any

vector fields X and Y tangent to M we have

V Y - VxY + V(xY) , (2.1)

where VxY and V(X,Y) are the tangential and normal components of VXY, respec-

tively. In other words, for p e M, (VXY)p and (V(X,Y))p are the orthogonal

3 projections of (VxY)p onto the tangent space TpM and the normal space NpM of M

at p, respectively.

While the operator V of (2.1) is a connection on M, it is well known

3 that V is a symmetric vector-valued 2-covariant tensor, called the second fun-

damental tensor. In particular, the value (V(X,Y))p depends only on the

values X and Y of the vector fields X and Y at p, and not on the field

nature of X and Y.

As noted in the introduction, we are interested in the numerical evalua-

I tion of the second fundamental tensor V at a given point p E M; that is, in

I
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the computation of V(XpYp) for an arbitrary pair of vectors Xp and Yp that

are tangent to M at p.

As observed before, the second fundamental tensor is closely connected

with the Riemann curvature tensor R on M. In fact, for any four vector fields

X,Y,Z,W tangent to 1, the following simple formula holds !
<R(X,Y)Z,W> - <V(X,W),V(Y,Z)> - <V(X,Z),V(Y,W)> , (2.2)

(see [12, Vol. IV, p. 47] and recall that the curvature tensor of Rn is zero). I
In particular, for W - X and Z - Y, it follows that

<R(X,Y)Y,X> - <V(X,X),V(Y,Y)> - IV(X,Y)2 (2.3)

where II denotes the Euclidian norm. The relation (2.3), in turn, allows I
for the computation of the curvature k(P) of any plane P - span (Xp ,Yp) c TM 3
since

k(P) - p p p (2.4)
A(X p,Y )where pp

A(X pYp) - IX p2 1 2 - <XpYp >2 (2.5)

is the square of the area of the parallelogram generated by Xp and Y . It is

well known that k(P) depends only on the plane P, and not on the specific 3
choice of X and Y

p p

In order to clarify the mentioned close relationship between the second 3
fundamental tensor and the Hessian of real-valued functions, we recall first

that for any field Z of normal vectors on M, the second fundamental form of M

in the direction Z is the bilinear form 3
(X,Y) - <VxZ,Y> (2.6)

defined for arbitrary vector fields X and Y tangent to M. Because of I
I
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I <ZY> - 0, it follows that

0 - X.<Z,Y> - <Vxz,y> + <z, X> - <xZ,Y> + <v(x,Y),Z>

and hence that

<VxZY> - -<V(X,Y),Z> (2.7)

I Now, with fixed p e M and Z e N M. consider the functionalP P

37 : M - R, 7(q) - <q - p, Z p>, for q E M. (2.8)

It is a standard and elementary result that d-y(p) - 0; that is, that p is a

critical point of 7. The Hessian of 7 at p is then the bilinear form

I H (X p,Y ) - (X.(Y.7)) , (2.9)

3 on TpM, where X and Y are any vector fields tangent to M which coincide at p

with Xp and Yp, respectively. Let Z be a field of vectors normal to M such

that Z coincides with Zp at p. Then, at p, the second fundamental form of M

in the direction Z is exactly the negative of the Hessian of 7 at p (see e.g.

3 [I, p.198]).In other words, (2.7) implies that

H (X,Yp) - <V(X ,Y ),Z > , (2.10)I -y p p p p
In Section 5 this relation will provide the basis for the determination of

* bifurcation direction.

I
3 3. Properties of the second fundamental tensor.

Let X and Y be arbitrary vectors of T M and suppose that
p p p

W p- aX pi + Y p with some real numbers a - 0 and P 0' 0. The bilinearity and

3 symmetry of the second fundamental tensor then implies that

i!
I
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V(X 'Y W ) a 2 -( ,X2V Y )j (3.1)

Observe that V(X ,Y p) can be computed for arbitrary vectors X and Yp of T pM,

if the d(d + 1)/2 values V(XiXj), I < £ < j < d, are known for some basis

(Xi)il,d of the tangent space T pM. Moreover, because of (3.1), the computa-

tion of the quantities V(Xi,Xj) can be reduced to that of the d(d + 1)/2 terms

V(Xi,Xi), 1 < i < d and (say) V(X i + X + X.), 1 < i < j < d.

Our algorithm for the calculation of V(X p,Y p), will be based on an ele-

mentary geometric construction. Suppose that IXpI - 1 and introduce the space
p.

H - span(Xp) M NpM C R7 (3.2)

Note that dim H - n - d + l and that, because of the (trivial) relation

Rn-TM+l,

the affine space p + H intersects the manifold M transversally at p. Thus,

locally near p, (p + 11) n M is a curve C and

TpC - H n TpM - span(X )

Since IXp I - 1, we can construct, locally near p, a field X of unit vec-

tors tangent to M which along C is tangent to C and coincides at p with X p. I

Indeed, we first define X along C through an arclength parametrization of that

curve and then extend X to a neighborhood of C in M. Since, by construction, X

is unit vector field on C, it is trivial that this extension may be chosen so

that JlX - 1.

Because C c p + H and X is tangent to C along C, it follows that

VxX E H along C

and, in particular, that
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I (VxX)p EH. (3.3)

Moreover, JXI - 1 implies that

0 - X-1 - X- <XX> - 2VxX>

I whence (VxX)p is normal to X p and together with (3.2) and (3.3) we obtain

In other words, the tangential component of VxX vanishes at p so that in view

3 of (2.1),

3(VxX) p- V(X, X) . (3.4)

On the other hand, because IXI - 1 and X is tangent to C along C, we have by

definition

3(VxX)pI - k (O: 0) (3.5)

where k is the curvature of C at p. Moreover, if k P 0, the principal nor-

p p
mal np of length Inp I - 1 is defined and

(VxX)p - kpn , (3.6)

Altogether, (3.4), (3.5) and (3.6) show that

V(X ,X - 0 if k p 0

V(Xp,X) -kpnp if kp > 0. (3.7)

When k O, the osculating plane to C at p is the plane

Pn

span (Xpnp) E Rn

A standard result of the local theory of curves states that the osculating

plane is the limit of the planes span(ql-p, q2-p) for any two distinct points

qi o p, i-1,2 of C that tend to p. Since kp 0 0 it follows that p and ql, q2

are not co-linear (see (12, Vol. II] for curves in R 3; the argument extends

easily to curves in R n). Thus ql, q2 and p define a circle in Rn and for
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qi - p, i-1,2, the limit of these circles is a circle C in the osculating

plane with radius

r p 1/k P(3.8)

This is the osculating circle at p.

4. A Computational Algorithm for the Fundamental Tensor

In general, whenever manifolds arise in numerical calculations, they are

defined either through a local parametrization which is an immersion or,

implicitly, as the zero set of a submersion. As in [8]-[10] it will suffice to

consider only the latter case. Hence, suppose that F: 0 c Rn - Rm is smooth on

the open set 0 and rank DF(q) - m for all q C Q. We assume always that

d - n-m > 2. Then

M - e 0 ; F(q) - 0) (4.1)

is a d-dimensional submanifold of Rn. For any p = M we identify the tangent

space T M with ker DF(p) and the normal space N M withp p

(ker DF(p))' - rge DF(p)* where as usual the asterisk denotes the adjoint

operator. There are various possible methods for the computation of the ortho-

normal bases of T M and N M; for instance, a simple approach is based on thep p

use of the QR-factorization of DF(p) (see also [10]).

For any given X e T M, X p 0, and sufficiently small nonzero h e R the

implicit function theorem ensures the existence of a unique point w(h) E N M

such that

F(p + hX + w(h)) - 0 . (4.2)

Once again, there are various methods for computing w(h). In particular, if I
!
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the QR-factorization of DF(p) is already available, a chord-Gauss-Newton pro-

cess can be applied -- with q - p + hX as starting point -- to project q onto
p

M along N pM. We refer to [10] for details and a convergence result. Note that

the process of projecting q onto M requires only the evaluation and decomposi-

tion of the Jacobian of F at p. Of course, we may use other decompositions

than the QR-factorization.

As in the previous section and with the notation (3.2), let

C - M r) (p + 11) denote the curve induced on M by the given vector X E T M.P P

Then, for small Ihi we have p + hX + w(h) e M n (p + 11) - C. This suggestsP

that we compute for some h > 0 the points

ql - p + hXp + w(h), q2 - p + hXp + w(-h)

on M. Then, if k. o 0 and h is sufficiently small, the triangle formed by
p

q' i-l,2, and p in the plane span(ql-p, q2-p) is not degenerate.

The well-known Heron formula of planar geometry states that for a non-

degenerate triangle with side lengths a,b,c, the curvature k of the cir-

cumscribing circle is given by

- a-_-[s(s-a)(s-b)(s-c)] 1/2  (4.3)

where s - (a+b+c)/2. In our case, the sides a - lql-pl and b - 1q2-p1 are

equal up to order h2 and the third side is almost equal to their sum. Hence it

is natural to introduce the scaled quantities a - a/c, and b - b/c, and toc c

rewrite (4.3) in the form

-(1) [ + 1 ( 2 ( - 2) (4.4)
c a bc c

where 6 - ac - b and 7 - 1/(a c + b c). The term in square brackets is close to

4 while the first square root is approximately equal to one. Thus, both of

these terms can be evaluated safely. But, in the last square root 7 is close
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to one, and hence we compute that term as 3
- arcos(l), (I - 72 - sin() (4.5) 1

When 1 - 7 falls below machine precision then, in floating point arithmetic,

will be zero and we set k -0. 3
Clearly, when h tends to zero then the circle through the points 3

q' i-1,2 and p tends to the osculating circle and hence k becomes the curva-

ture kp of the curve C at p. Thus our algorithm produces an approximation k of 3
k .

If k is not zero, then an approximation n of the normal vector n can be

generated by orthogonalizing the vector v - (ql - p) + (q2 - p) with respect

to Xp and then normalizing the result to length one; that is, by applying the 3
algorithm

n v - <X v> X n :_ n

Thus altogether, we have obtained an approximation V(X , Xp) - k n of

V(Xp, Xp). I

As noted in the previous section, the calculation of the fundamental ten-

sor V can be reduced to the computation of the d(d + 1)/2 quantities I
V(Xi,Xi), 1 < i < d and V(Xi + Xj, Xi + X.), 1 < i < j < d for some basis

Xi, i - 1,..., d of T pM. Of course, this basis may be chosen in various ways;

we indicate here only some advantageous choices in the cases d - 2,3. For this 3
purpose, suppose that an orthogonal basis of T M is already available whichp

then defines an isomorphism U from Rd onto T M. I
p

For d - 2 we introduce in R2 the vectors

I
U
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X1 .- U , X 2 - U1) X3 - X1 +X 2

where, for ease of notation, r - 3 Then, with the above algorithm, the

values Vi - V(Xi, Xi) , i - 1,2,3, of the second fundamental tensor can be

3 computed, and, by (3.1), we obtain
1

V12 - V(X1, X2) - !(V1 + V2 - V3)

Now for any two vectors Y' Y2 E TpM it follows that

Y i - aiX1 + iX2  i - 1,2

5 with

1 - 2 [21,X i -1,2
12

and hence that

3 V(YI, Y2 ) - 01a2 V (al + + a2pll)V1 2 + Plf2V2 (4.6)

For d - 3 we proceed analogously and introduce the vectors

xl-U , x2=gU(T] x3 U

* and

dX +x 2 2 x+

X4  1 2 fX 5 - () (Xl+X 3) X6 - () (X2 +X 3)

Then, once again, we compute Vi - V(Xi, Xi), i - 1,...,6, and

V(XI X2) 2 - 1 - V1 - V2)

V(Xl ) V 3 ~1
v(x1, x3) - V 3 - V5 - (V1 + V3)

3 1V(X2 ' X3) - V23 - 4V6 - (V2 + V3)I
I
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Now for any three vectors Y E TpM, i - 1,2,3, we have

Yw - aiX 1 + PiX2 + 7iX3 i - 1,2,3

with

i 5 2 YX2 , i - 1,2,3
li - 3X1

and hence

V(YI, Y2) - a a2VI + 01'62V2 + 7172V3

+ (ai'2 + a2 p1 )V12 + ($172 + 271)V2 3 + (172 + 271)V13.

It should be evident how we might proceed for higher dimensional mani-

folds M. Note that, independent of the dimension d of M, the computation of

the fundamental tensor at a point p of M requires only one evaluation and

decomposition of the Jacobian of F, namely at p. The computational cost for

this is of order n , where, of course, n is the dimension of the embedding

space. Once the decomposed Jacobian at p is available, the cost of projecting
2

each one of the d(d+l) required points onto M is of order n while all other

parts of the algorithms involve a lower order of operations.

5. Determination of Bifurcation Directions

As in section 4, suppose again that the smooth mapping F: 0 c Rn Rm,

(d - n-m > 2) satisfies rank DF(q) - m for all q on the open set 0 and hence

that (4.1) defines a d-dimensional submanifold of Rn. At a given point p C M,

we consider, as in [8], local coordinate systems which are induced by some d-
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dimensional linear subspace T of Rn. More specifically, if T n N M - (0) thenp

it follows from the implicit function theorem that there exist open neighbor-

hoods Q C T of the origin of T, and S C Rn of p, respectively, and a smooth

mapping f: Q - TI such that f(0) - 0 and M n S - O(Q) where

e: Q - Rn , 0(u) - p + u + f(u) e Rn , u r Q (5.1)

Note that always De(0)u e T M for u G Q and hence that for the local coordi-p

nate system induced by T - T M we have Df(O) - 0. For this case we considerp

here the numerical evaluation of the bilinear mapping

(XY)TpM x TpM D2f(0)(X,Yp) (5.2)

Let Z1 ... PZm be an orthonormal basis of the normal space N pM and hence

f - fl z1 + ... +f Z fi - <f' Z> i- ..,m. (5.3)m m' i "

For each Zi , 1 < i < m, we consider, as in (2.8), the functional

7 M - R, 7 1(q) - <q - p, Zi>, for q E M (5.4)

for which

71(q) - <u + f(u),Zi> - <f(u),Zi> - fi(u), for q e Q, (5.5)'

and hence f 1 7°e. Since, Df(0) - 0 we have Dyi(O) - 0 and De(0)Xp - Xp for

any Xp e T pM. Thus the Hessian Hi of Y1 at p is given by

Hi(Xp,Yp ) - D2fi(0)(Xp,Yp), for all X p,Yp E T M

Now (2.10) implies that

D2 fi(O)(Xp,Y) - <V(Xp,Y),Zi>, i- ..... )m, (5.6)

whence, by (5.3),

D 2f(0)(X p,Y ) - V(X p,Y ).

In other words,the second fundamental tensor of M at p is exactly the second
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derivative of f at the origin of T pM. Note that this simple relation is validp]
only when Df(0) - 0; that is, when the local coordinate system at p is induced

by the tangent space. But that is a natural choice in the framework of bifur-

cation problems.

Generally, in applications a d-dimensional natural parameter subspace

A c Rn is identified. We follow here the approach in [4] and call a point

p E M a foldpoint (with respect to A ) if A does not induce a local coordinate

system at p; that is, if

NO - A n NpM o (0).

The integer r 1  dim(N0 ) is the first singularity index of the foldpoint and

the set

(q e M; <q - p, n> - 0, for all n E NO)

the cutset of M at p. Let Z i- ,.... r1 be an orthonormal basis of N and

extend it to an orthonormal basis of all of N M. Then it follows from (5.4)

and (5.5) that, locally near p, the cutset is the zero set of the mapping

r1

g: Q c TpM - R , g(u) - (fl(u),...,fr (U)) T, u e Q. (5.7)

Evidently, we have g(0) - 0, Dg(0) - 0, and if r2 > 1 exists such that

Dk r2+1

Dkg(0) - 0, k-0,l ... r2 , D g(0) 0 0

then r2 is called the second singularity index of p. Under some non-degeneracy

conditions (see e.g. [2],[4], or [6]), the form of the cutset is determined,

locally near p, by the nontrivial zeroes of the (r2+l)-form

Dr2+l

D 2g(0)(X p...,X p), X p =TpM.

For r2 - 1 it follows from (5.7) that
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D 2g()(X'X (<V(X 'X ),Z1 > .... <( X),Z r>), X e T M. (5.8)
p PP p 1 p p

In other words, the bifurcation directions at p are the zeroes

I Xp e TpM, X o0 of the rI quadratic equations

3 <V(Xp,Xp),Zi> - 0, i-V... r1 . (5.9)

3 It may be useful to reformulate this result for the standard setting of

bifurcation theory. For this suppose that G: RmxR1 - Rm is a smooth mapping on

I some open neighborhood of a point (y,A) E R mxR1 where G(y,A) - 0 and

dim ker DG(y,A) - r+l > 2. For ease of notation we shall write here also

x - (y,A) and, in particular, x - (y,A). Note that the conditions on G imply

3 that dim ker DyG(x) - r > 1 and dim rge DG(x) - m-r < m-l. Let al, ... ,ar C R7

be linearly independent vectors which span ker DG(x) . Then span(aI, ... ar) is

3 a complement of rge DG(x) in Rm which suggests the introduction of the unfold-

ing

F: R7XA - Rr , A f R XR7, F(y,A,6) - G(y,A) + 61a1 +...+ 6rar  (5.10)

3 where 6 - (61, ... 6r). With n-m+l+r, d-r+l, q - (y,A,6) this corresponds

exactly to the earlier setting. Clearly, we have F(p) - 0 at p - (x,0) and

the condition rge DF(p) - m holds in an open neighborhood of p. Hence the d-

U dimensional manifold (4.1) is well-defined and p is a foldpoint with respect

to A with first singularity index r1 - r. Since

DF(p) ai - enr+i,

where ej are the natural basis vectors of Rn , the set NO - A NpM is spanned
here by Zi - eri, i-i....r and the cutset is the solution set of the equa-

3 tions F - 0, 6 - 0 and hence of G - 0. Our local coordinate system is given

now by

- (x+e,6(e)), C e ker DG(x)I
U
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Thus we have f1 " <'e n-r+i> - 61, i-i,.. ..r and (5.6) becomes 3
D 2 6(0)( ,) - <V(( ,0),(",O)),Z > i-i....r, for t,q e ker DG(x).

Hence, if the foldpoint has second singularity index r2 - 1, then under the

mentioned non-degeneracy condition the bifurcation directions for G - 0 are 3
exactly the solutions of the quadratic equation

D26(0)Q10 - 0 (5.11)

In bifurcation theory, the characterization of the bifurcation direc- I
tions, given here in terms of 6, is usually formulated in terms of the reduced 3
mapping obtained after transforming the equation G - 0 by means of the

Lyapunov-Schmidt reduction. While both characterizations give equivalent 3
results, the method we use here completely bypasses the Lyapunov-Schmidt

reduction and allows for all calculations to be performed in the framework of I
the smooth manifold (4.1) on which no singularity hampers the computations.

The equations (5.9) (or (5.11)) determining the bifurcation directions

are readily solvable. In fact, suppose, as in section 4, that X1 ... Xd is a I
basis of TpM for which the components Vij - V(XiXj) , I < i < J < d of the 3
second fundamental tensor have been computed. Then (5.9) reduces to a system

of homogeneous quadratic equations 3
T dxTAkx - 0, x E Rd , x 0 0 (5.12)

where the dxd-matrices Ak have the elements

aij - <VjZk>, 1 < ij 5 d, k - 1.... r 1

and 3

Xp - XlX1 + ... + XdXd

This system of quadratic equations can have finitely many isolated solutions

U
I
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only in the case d - r1+l. Hence this is the only case for which solutions

will be sought numerically. Clearly, for small d the system is easily solv-

U able. The case d - 2, (r1 - 1) is, of course trivial, and also for the case

d - 3, (r1 - 2) simple methods are available. In fact, (5.12) has non-trivial

solutions only when all matrices are indefinite. Thus in the (3x3)-case each

A kmust have one eigenvalue of different sign than the other two. Hence, if

there is no degeneracy, then, after diagonalization, the first of the two

3 equations has the form

2 2 2
1- A2 2 + 3

with pi > 0, i-1,2,3. This suggests the normalization C1 - 1 and the use of

3 the elliptic coordinates C2 - a cos(r), C3 - P sin(r), 0 < r < r where

a - (sl/p 2 ) & - (&l/'3) ;. Now we can readily detect the intervals in the

r-variable on which the corresponding residual of the second equation changes

sign, which, in turn, allows the application of a standard root finder for

determining the solutions.

Clearly, for larger dimensions such simple approaches are not readily

available, and the system (5.12) has to be solved by means of one of the poly-

nomial root finders as, for example, the CONSOL system, [5).

16. Numerical Examples

3 In order to demonstrate the performance of the algorithm, we present here

some numerical results obtained with a FORTRAN implementation run in double

precision on a VAX-cluster.

I As a first, very simple problem, consider the cusp

I
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3 1 3 3
F: f3 - ft, F(x) - x1 - XlX 2 -x 3 , for xR .R (6.1)

The tangent space at x - 0 is TM - span(el,e 2 ) where ei , i-1,2,3 are the

3natural basis vectors of R3 . A straightforward calculation shows that at x - 0

we have

V(Ulu 2 ) - -sin(* 1 + *2 )e 3, for ui - (cos(*i),sin(Oi),0)T e TxM, i-l,Q.2)

Table 1 gives some comparison of computed values of the curvature and their

corresponding exact values k - Isin(O 1 + 02)1 for different choices of the

two angles. Here we used a step h - 0.005 in the curvature evaluations and a

tolerance of 10- 6 for the projection of the points onto the manifold.

I Table 1: Curvature of the Cusp Function I
II
101 02 Exact Computed

0 0 0.0 0.0

0 0.31 0.809017 0.809013

0 0.6m 0.'951057 0.951052

0 0.9W 0.309017 0.309016

0.31 0.3w 0.951057 0.951052 I

0.37 0.4w 0.809017 0.809013

0.3w 0.5w 0.587785 0.587782 I

0.61 0.61 0.587785 0.587782

0.61 0.9w 1.0 0.999995

0.8w 0.9W 0.809017 0.809013

The computed values certainly are in excellent agreement with the exact data.

All our experience so far indicates that the curvature algorithlm is indeed

very reliable, not just for small problems as this one.
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As a second example, consider the two point boundary value problem

-u'' - Au + au2 - 0, u(O) - u(f) - 0 (6.3)

which, after a straightforward discretization and in unfolded form, leads to

the finite dimensional system

Ay + h 2(aQ(y) - Ay) + Aw - 0, y ERk , h - r/(k+l). (6.4)U - 2 2T
Here Q(y) - (y ..... k )T and A is the symmetric, tri-diagonal, kxk matrix with

diagonal elements 2 and sub-diagonal entries -1. Thus, with q - (y,A,A) e Rn

and n - k+2, m - k, d - 2, (6.4) is a problem of the form considered in sec-

tions 4 and 5.

Let a 1 < <a k be the eigenvalues of A. The unfolding vector w was

chosen as a normalized eigenvector of A corresponding to the eigenvalue a for
co 2

a given i. Then p - (O,ai/h,0) is a foldpoint of (6.4) with respect to the

3 parameter space spanned by the basis vectors en1l, en of in and both singular-

ity indices of p equal one. A theoretical analysis of (6.3) shows that each p

is a bifurcation point and that for odd values of.i the bifurcation is tran-

scritical while for even i the branches intersect at a right angle. More

specifically, for odd i the angle ai between the bifurcating branches satis-

fies

+ 2) 3  3
- cos(a - - W + ' +wk (6.5)

where w 1....wk are the components of w.

Table 2 shows the computed and theoretical values of for i - 1,...,k

in the case k - 15. Again the agreement between the computed and the predicted

data is excellent.
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I Table 2: 71-values (6.5) III
i Exact Computed 3

I~
1 0.287444 0.287445

2 0.0 0.155(-15) I

3 0.996991 0.996700 I
4 0.0 0.673(-16)

5 0.608096(-1) 0.608102(-l) I

6 0.0 0.0

7 0.462437(-l) 0.462441(-1) I

8 0.0 0.171(-1l) I

9 0.478171(-1) 0.478175(-1)

I10 0.0 0.160(-15) I

11 0.940416(-1) 0.940424(-1)

12 0.0 0.801(-17) I
13 0.340802(-2) 0.340805(-2) I
14 0.0 0.171(-11)

15 0.869785(-4) 0.869794(-4) I

I.I

As a third problem we consider the discrete Brusselator (see e.g. [7]) in

unfolded form I

Ay - Ah2 (( 2-l)y + 9z + G(y,z, )) + w1  - 0 1
2 h - 7r/(k+l), y,z e Rk (6.5)

Ay + 0.25Ah (fly + 9z + G(y,z,f)) + vw2 - 0 3
where again A is the tri-diagonal, kxk matrix used in (6.4), and

G(y,z,f) - (g(yl,Zl,#) .... ,g(ykzk,#))T , g(s,t,#)-( 1 + t)s2 + 6st

T 1 2

I
| | |
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With q - (y,z,A,p,v) e Rn and n - 2k+3, m - 2k, d - 3 this is a problem of the

form considered in sections 4 and 5. If again a, <... < ak are the eigenvalues

of A then some calculation shows that p - (O,O,X,0,0) with

h-2 (13 a +a

X 2 i a 4 (6.6)
3h2  (ai a (u )

3 is a foldpoint of (6.5) with respect to the parameters A, p, v and with first

and second singularity indices 2 and 1, respectively. For k - 3 and

i - 1, j - 2, (6.6) gives the values A - 1.08158, P - 6.83343 used in [7],

while for k - 8 they become A - 1.14009, P - 6.96599. In each case, our algo-

rithm determined four bifurcation directions. For k - 3 the computed direc-

3 tions are given in Table 3. This appears to be the first computational deter-

mination of bifurcation directions for singularities with co-dimension larger

Ithan 2 in the literature.

Table 3: Bifurcation Directions for the Brusselator J
#1 #2 #3 #4

-0. 646189(-6) 0.777229 0.253517 -0.380313
-0.594689(-6) 0.370361 -0.370326 -0.537862

-0.194827(-6) -0.253460 -0.777237 -0.380338
-0.311403(-6) -0.321441 -0.292234(-l) 0.212202

I -0.331812(-6) -0.206646 0.206627 0.300105
-0.157850(-6) 0.291988(-1) 0.321438 0.212211
-1.000000 0.218236 -0.218217 -0.491205
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

3 Clearly, once the bifurcation directions are available, a standard continua-

tion process (see e.g. [11]) can be started to follow the corresponding solu-

I tion branch.

The examples certainly indicate that th gorithms presented here per-

form very well in practice. As noted, our experience has shown that the curva-

I ture computations are very reliable. Of course, in the above examples we

I
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always worked with an exactly known foldpoint p with known singularity 3
indices. In practice, one often has only some approximation of such a point.

But in our approach, this is not a serious concern. In fact, the second funda- 3
mental tensor V is a smooth function of the base point on the manifold M and

hence the computed V can be expected to be an approximation of V at the exactI

foldpoint. Thus for any chosen normal vectors Zi the quadratic equations (5.9) 3
should also be close to the corresponding equations at p itself. This leaves

only the determination of the critical first singularity index rI and of the 3
normal vectors Zi that span the intersection A n N pM. We refer to [7] for

some comments about the determination of r, and to (3] for a method to com- 5
pute an approximation of the basis vector in the case r1 - 1.
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